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Abstract-—This paper presents the asymmetric analysis of the stress distribution arising in an
isotropic infinite slab with a symmetrically located spherical cavity under a unidirectional uniform
tension. To satisfy both boundary conditions on the surface of the slab and the surface of the cavity,
harmonic functions in rectangular and spherical coordinates are used and the double Fourier
transform is applied. The problem is reduced to the solution of infinite sets of linear equations
which are suitable for numerical solution by an iterative technique. Finally some numerical examples
are given for various values of the radius of the cavity.

1. INTRODUCTION

The problem of stress concentration has been mostly studied for infinite media. Although
there have been some investigations concerning a medium of finite thickness, these have
been mostly restricted to the axisymmetric cases, and the asymmetric problems received
little attention. In the present paper, the problem of determining the stress distribution in
a slab of an isotropic material having a spherical cavity which is subjected to unidirectional
uniform tension is considered.

The problem of stress distribution in a stretched slab of isotropic material having a
spherical cavity subjected to all-round tension has been considered by Ling (1959). This
problem was also considered by Fox (1960) and Kaufman (1958), and Ling (1969) has also
investigated the problem involving an eccentric spherical cavity. On the other hand, Atsumi
and Itou (1973) have considered the case of a transversely isotropic material. All of the
above papers are concerned with axisymmetric analysis, and the problem when the uniform
tension is unidirectional, which is more physically realistic appears not to have been
investigated. The purpose of this paper is to analyse the stresses when the tension is
unidirectional, instead of all-round. To solve the present problem, the required stress
functions are constructed by combining harmonic functions of three independent variables
in rectangular and spherical coordinates and then the Fourier transform is used.

The problem of the stress concentration in the vicinity of a spherical cavity has been
considered by Southwell (1926). For the elastic inclusion of different materials, Goodier’s
work (1933) provided a detailed analysis of stress concentration. Subsequently, Sadowsky
and Sternberg (1947) derived the stress field around an ellipsoidal cavity under the plane
stress condition, and Edwards (1951) considered the specific case of a spheroidal inclusion
and cavity. We cite some more recent works which are relevant to the present problem.
Zureick (1989) and Zureick and Eubanks (1988) considered the problem of an infinite
transversely isotropic medium containing a spheroidal cavity when either asymmetric trac-
tions or displacements are prescribed on the surface of the cavity. Hadama and Kodama
(1986) obtained a solution to the problem of an elastic infinite body containing a series of
spherical cavities under tension. The axisymmetric problem regarding the stress distribution
at a spherical cavity in a circular cylinder which was first considered by Ling (1956) was
investigated for the general case of axisymmetric loading by Solyanik-Krassa (1986). Tan-
don and Weng (1986) considered the problem of stress concentration when the medium
contains finite concentrations of inclusions, and the compressibility of an isolated spheroidal
cavity in an isotropic medium was considered by Zimmerman (1985).
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2. SOLUTION PROCEDURE

Denote as usual the cylindrical, and spherical coordinates of a point by (r. 0.z} and
(p. $.0), respectively. Two coordinate systems are connected to each other by

;

S=peosd = pp, F=psing =py ol {h

Consider an infinite slab of thickness 2/ having a spherical cavity of radius 4 located
symmetrically between the surfaces of the slab shown in Fig. 1.

The asymmetric stress components in rectangular coordinates which satisfy the cqui-
librium equations are expressed in terms of potential functions F, Z and  in Green and
Zerna (1968) as follows.

O°F &Hy o7z (1-2 )FZ 0o
O = - oS U2y =)
Yo axdr dydz Tava: éx

N e ~2 o phlrey -
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YUoxay vt ooxt Taxdy

AT g - -

CF 7 4
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ox” oxady  0x” dz

& F i &z 6z .
Oy =7y — 2 dj Iogy 2V 5 21)
oody” cx dy fyv” Jz

where
VF=Vy =VZ=90
with
R L o
Vo= s 4+ s + W
éx* o ofyt o ot

In egn (2) v is Poisson’s ratio. From eqn (2), we can immediately see that in the absence of
the cavity, the basic stress functions

F,= T -7 —22)2(1 +v), {3a)
Z, = —Tz/2(1 +v). (3b)
¥ = Tvxy/2(1+v), {3¢)

Fig. 1. Coordinate system.
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will produce no stresses except the uniform tension 7 in the x-direction. In the sequel, T is
deleted for convenience.

Suitable potential functions for the present problem which give rise to displacement
and stress fields are

2 20 o0
F(x,y,2) = (-;;) j J A(&,m) cosh ({z) exp [—i(Ex+ny)] dE dn+ Y p !

n=40

{4y P () + a2 cos (20)P3 ()} —a% [P 2(0)+ $03(w)] cos (26), (4a)

2 o) o
Z(x,y,2) = (51;) j f B(&,n) sinh ({z) exp [—i(Ex+np)]dEdp+ Y, p~ 72

n=10

1
X {buPony 1 () + B cos 20) P31 (W)} "‘ﬂ;)‘z‘ [BPT (W)~ 10 (w]cos (20), (4b)

Wx,3.2) = (‘}n) f rm C (&) cosh (L2) exp [—i(Ex+ny)] € dy

o0

1
+ 3 p~ e sin (29)P§n(ﬂ)“?’; [P52(w+3Q5(wlsin 20), (40)

n=1

where «, § and y are the constants which will be determined subsequently. In the rep-
resentation (4), the coefficients a”, and b} are absent since P2(u) = 0, when 2 > n. Also,
{=./E+n*and P, P? P;? and Q} are the Legendre and the associated Legendre
functions of the first and second kind, respectively, and these functions are defined in Erdelyi
et al. (1953) as follows:

P w) = (1——u2)”‘£ ﬁ P,(w)(dp)?,

d2
03w = (1—p?) -f;f“),

where the required expressions of the Legendre functions of the second kind in the present
work are

Qolw) = %log;[:f’ 0w = %ulogﬁ_‘j——l.

The boundary conditions which are to be satisfied by the stress functions are

G =0,=0,=0 on z=Ah (5)

and
O'pp: p¢:6p9:0 on pzﬁ (6)
We shall determine 4(&,n), B(&,n) and C(&,n) from the boundary conditions (5) on the

surface of the slab. The boundary condition o,, = 0 on z = A gives, after Fourier transform,
the following equation:
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A, m)E sinh (Ch) + C (&, mnd sinh (Ch) + B(E, ) {Ch cosh (Ch) — (1 —2v) sinh ({h)}

_‘[5‘A= {Fo}‘+"73 J{W(U_i_é[ ‘;“(1'2"] {ZO}:‘ . (D

=h

where F o Z,and yq are the third and fourth terms of eqns (4a), (4b) and (4¢), respectively,
and & {-} is the Fourier transform defined by,

# (Fo} = f J ~ Fo(p.¢.6)exp [i(Ex-+ny)] dx dy ®)

and F {y,} and & {Z,} are defined in a similar way. To evaluate integrals in eqn (8), we
continue as follows. If we take polar coordinates, defined by the equations

x=rcosf, y=rsinf

we have

JJ Pm;ff? d)) -exp [i(€x+ny)] cos (mb) dx dy

J‘ ‘ P'"(z(z’ +r
0

(z + rz)m“)‘l 72 ) <J:) cos (m@) exp [ir(¢ cos 6+ sin 6)] d0>r dr. (9)

Now letting

E="{cosu, n=7{_sinu, (10)

the inner integral in the right-hand side of eqn (9) can be written as
2n
J cos (mf) exp [ir{ cos (6 —uw)] dO = 2xi™ cos (mu)J,,({r) an
0

by Whittaker and Watson (1948). If we now make use of the integral formula found in
Erdelyi et al. (1954)

m(é +l’ ) 1/ ) Cn—\ e—~:; ‘
In_} . 12
.[) (PR Inlerjr dr = Tn+m+1) (12)
and the relation
. F(n+m+ 1) pm
Pr(w) = Foi—m+1) P ()

then, eqn (9) becomes,

- ” PN W74
jj BE_’()%;S[_LQ exp [i(Ex +ny)] cos (mb) dx dy = 2xi" cos (mu) g( :n)' . (13a)

Similarly
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Pm n—1 ,—z{
” (‘,ffl ) exp [i(Ex-+ny)] sin (mf) dx dy = 27" sin (rmz) Tn—_:‘n—), (13b)
Now, using the relation
Qi(cos ) 2z
p
from the analyses similar to the previous procedures, we find that
0 2 J d
j[ QO(?S é) cos (20) exp [i(Ex+ny)] dx dy = —4nz cos(Qu) f Z(Crr) !
= —2nz cos (2u). (14)

In the last equation, we have made use of the relation in Erdelyi ez al. (1954)

*Jy(¢r)dr 1
L L T (19
Similarly, we have
0 2
J' J _%s_s_@sin (26) exp [i(&x+ny)] dx dy = —2nz sin (2u). (16)
Next, since
Qi(cos ¢) 2
p’ o
we have
JJ g_(c__@ cos (20) exp [i(Sx +ny)] dx dy = 2m cos (2u). an

Thus, if we substitute eqns (13), (14), (16) and (17) into eqn (7), we obtain one relation
connecting A(£,n), B(¢,n) and C(&,n):

A&, n)¢ sinh (Ch) + B(E, m)E{Ch cosh ({h) — (1—2v) sinh (Ch)} + C (€, n)n{ sinh ((k)
=2ne " [EA'+E{Lh+ (1 = 20)} B' +nC' ] —n[{a+ (1~ 2v) B} £ cos Qu) +yy sin Qu)], (18)

where 4’, B’ and C’ are defined as

, @ anCZn oo aLZ)CZn o
Y=L ‘°°S‘2“){n=1<27-7>s+5} ’ (19a)
L bl = bR B
= ¥ Gnryi (2u){n;l =i~ 5}, (19b)

© (2)¥2n
C' = —sin(2u){ 2 (2%-%‘*2)—' " %}

n=1

(19¢c)

SAS 30:19-1
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Similarly, the remaining two boundary conditions ¢,. = 0, and o.. = 0 on z = / lead to the
following two additional equations for solving A(¢.n), B(&,n) and C(&, 1)
A, i sinh (Ch) + B (&, n)n{Ch cosh ({h) — (1 —2v) sinh (Ch) ) — C(E, ) EC sinh (Ch)
=2me P pAd +n{lh+1=2v} B —CT—n(la+ (1 = 2nf 15 cos 2u)— < sin Q). (20)

A(E, )¢ cosh (Chy+ B(E.n){Ch sinh (Ch) —2(1 —v) cosh (Ch) |
=2me M[A+{Ch+2(1 -1 B8] (21)

Therefore, we now have three equations, (18), (20) and (21), to solve for A(Z.x), B(S. )
and C(&, %) in terms of 47, B and C’. Thus, after solving these equations, we obtain:

2nl !

A ) = 22‘;1;;;]5*(75}1)(wA'{2Ch~3+4\,'*e 2B~ (1= 20)(2 = 2v)!
+ {4 (1 =2v) B} [Ch sinh (Ch) —2(1 —v) cosh ({h)] cos (2u)),  (22a)
2n ;o Ty
B(,n) = EE/’lﬁ-{- sinh (ZUI) (2/4 +1{2lh+3-—-4v—c "} B
— o4 (1 —2v)pB} cosh (Ch) cos 2u)),  (22b)
ﬂL_’ l - oh ’ . .

If we substitute the value of C(<,5) from eqn (23¢) into the second term of eqn (4¢), we
obtain

v , sin ( 711)
(iﬁ) JJ ) C(&,m)ycosh ({z)exp [—1(Ex+ny)] dE Jf . sinh (g/v

i A(2) .~
S h T o . TN A2 "
X (e ”; (2n—2)! "+ 5 (e ) cosh ({z)exp[—1({x+yyry]dEdy. (23)

To satisfy boundary conditions on the surface of spherical cavity, it is necessary to express
eqn (23) in spherical coordinates, and this is performed as follows. If we use eqn (10). the
first integral on the right-hand side of eqn (23) can be written as

* sin ZuC”" ) ) o )
JJ . sT(Hh)@/Z ¢ " cosh ({z) exp [~—i(&x+ny))dE dy

£ e2n -l n
= J‘“ sginhe(lh)j ) cosh ({z) exp [—1{(x cos u+y sin w]sin (2u)dudl. (24)

From Whittaker and Watson (1948), we can easily obtain the following formula:

f cosh {{z) exp [—1{(x cos u+ v sin w)] sin (2mu) du

-
vﬁ,\

= (— 1)"2n sin 2mb) Z *pimcos ), (m=1). (25)

k= m(2k+2 )‘p

Therefore, if we employ eqn (25) in eqn (23). it can be written as
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2 0
() [ cemeomeemi-iersmsean

o0 © (2) o #2k(o—Ch 2k
_ Z [ Z [In+kcn ]+ % . g_(e_,—l) dc:l—p__—_])%k(cos 4))’ (26)
k n=1

- 2n—-2)! sinh ({h) k+2)!
where
o e’(h Czrlﬂ- 2k
L= L de (27)

Therefore the stress function ¥ (x, y, z) in eqn (4¢) can be expressed in spherical coordinates
as follows:

¥(p,$,0) = sin (26) Z [(2k +2),p +c£2)p'2k"]P%k(cos #), (28)
where
2 Txcl?
o= 2 - O @)
_y = % dg
O = E(Ik'ﬁ sinh (Ch))' (30)

To express F(x, y, z) in spherical coordinates, we need the following formula :

J ’ cosh ({z) exp [—i{(x cos u+ y sin 1)] cos (2mu) du

Czk

Gk oy P P osg). (m=0,1). (3D

= (—1)"2n cos (2m#) Z

Similarly, if we use eqn (31), we can express F(x, y, z) in spherical coordinates as follows :

F(p: ¢5 0) Z |:($:)|p + kp—Zkgl]PZk(cos ¢)

) (2)
+cos(26’)2[ Pk p* +a(2)p‘2k‘l:lP§k(COS¢'), (32)

(2k+2)!
where
n+kGn ,,+kb,,
; [ (2n)! (2n+1)!]’ (33)
L, ,a? M, b2
2= mtk LontkTn
* ; [(Zn 2" (2n—1)!]+n"’ (34)

with
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£ "’zhL 2k 20
(QL}I — 344y~ . . .
Lii = ﬁ © 2h+sinh (200 dé. (35

% zgzn»’A 2/3 1 _)\,)(2 2\’)}
L L - glz+smhz21h dcs (36)
) “h smh (gh) 7(1-v)(,0<h (gfz) e
= 4 L — I —=2v)} A AR S 2L R e
HA _,(OCL/\ ﬁM/\) {Cl‘f'/}( 21«), J: 7L}1+Slnh (2(,’[) dt, (37)

Equations (35) and (36) contain terms which are divergent at the lower limitif (n+4) = 0
However, the divergence can be removed by adding {1 —v)/{h and (1 —2v)(2—2v)/2¢h to
eqns (35) and (36), respectively. These divergent terms are so-called trivial terms and do
not affect the stresses within the slab.

Now we use the following formula to express Z(x. y, z) in spherical coordinates:

j sinh ({z) exp [—1{(x cos u+ v sin u}] cos (2mu) du

y e+

= (—1)"2m cos 2mb) ¥ () P

Ok +1+2m )‘ Psl, (cos @), (m=0,1). (38)
k= m

Thus eqn (4b) becomes
Z(ﬂ,(l) 0) Z ]:(Zkv::-ﬁ'p W ‘+bk,0 * '].Pz/HA](COS (/))
{2
+cos (20) Z [(z,i‘+ S }Péﬁ (cos @), (39)
where
s Ji]+11uié K;hwi'bﬂ } -
= B 40
s Z[ @nl T @t 0
S I S Y
(2 n+kbn B n+kYn
6= Z [(Zn oyt (M_l),]ﬂ“ (41)
with
£ 2u“7,,, R
= 42
T Jn 2¢h+ sinh (2gh)d (42)
o . 3h
(?gh+3 —dy—e g) ka2
e e [ AL 43
Ko = jo 2Ch+sinh (2Ch) < ® (43)

- COSh (Ch) ‘,a 2

To satisfy the boundary conditions on the surface of the cavity, we need stress com-
ponents in spherical coordinates in terms of F, i and Z. These are expressible as follows :
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O°F 2 0% 20y 0Z sin ¢
GP"-F-F;W—;T@O-Fp@zCOSd) 2(1——v) cos¢+2 Eﬁ—p—’ (45)

o (1 0F 1 oy 52l// 0 (07
"”“”a—p(E%)“"“”"a <p ae>+ 2a¢ae+?f$(_°°s¢’>

Z 6Zcosq§]
2(1—v)| — —— , (46
+2( V)[ sin ¢ 7 p (46)

1 08 (16F 1 oW @ 1a¢) <1a¢>
”ﬂo-m%(m>+mfa‘f»7‘a (,,a poin @=peos 5,02 36
0’z 21— 0Z cot ¢
dp b N0 o p

+cot ¢ 47)

_.iaz_F 10_F+£i t¢a_w>+z_%+lazz Sd’
a¢¢-p2 a¢2+ ap 2 ¢ p2 a0 5(]52 co

sin $9Z - 2v)cos¢%§. (48)

+2(1—v) 3

The stress components due to the uniform tension are denoted by superscript (1), and
when expressed in spherical coordinates, using eqns (45)—(48), are as follows:

al) = §P3(cos @) cos (20) — 1 P,(cos @) + S Py(cos ¢)

= 3sin? ¢(cos 20) +1), (49a)
1 .
ohd = mPg(COS $) cos (20) + ¢ sin ¢ dP,(w)/dp
= 1sin ¢ cos ¢ (cos (20) + 1), (49b)
1
y _— 2 . — e .
O =~ g Sn o P35 (cos ¢) sin (26) 3sin ¢ sin (20), (49¢)
oy = 1cos? ¢(cos (20) +1). (49d)

Now, the stress components ¢,,, 0,4 and o, are all zero on the surface of the spherical
cavity, p = A. The condition ¢,, = 0 on p = A gives one equation to determine a, and b,,
ie.

2 {(Zk)' 1)12k¥2+ak(2k+ l)(2k+2)/1—2k_3
+|: Ak—1 (Zk—l)(2k 4+4v)12k 2+b (2k(2k+3) 2v)i——2k l] 2k
2k—1)! - x
k+1
+[(2k+1)' {2k (k= 1) = 2= 20} A%+ b2k +2) 2k +5 -4 A~ 3]4 +3}
- Py (cos @)+ 3 Py(cos ¢) — 1 P,(cos ¢) = 0. o

Setting the coefficients of Py.(cos ¢) equal to zero, we obtain one equation for determining
a,and b, :
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b

Y Aa,G (0, k) +b,Go(n. k) + @z (k) + by 122 (k) +byzs (k) = 16, — W0, k20, (51

n=1{

where 0 1s Kronecker’s delta and

Gl(/’l.k) = ([’1an+/’z-]uw l+p3']n+/\)r1* (52)
Gz(n,k) = (le11+/(+/)2KH¢/~ |+I)}K”"k)tl/‘(2n+l)’ (53)
with
P = —2k(2k—1)/72,
pa = (2k)> 2k — 1) (2k — d+dv)j(dk — 1) 12,
pao={2k(2k —1)—=2—2v}/(4k+3),

o= 222k,
zi(k) = Qk+ 1)(2k+2)/23 7,
2o(k) = {2k(2k +3) —2v) 2k /(4k — )2+ 1
Z3(k) = (Qk+2)(2k 4 1)(2k + 5—4v) /(4 4+ 3) A7 .

Similarly, the boundary condition 7, = 0 on p = £ gives another equation to determine «,
and b,, 1.e.

X

(’)k _71)' (2k- 1)(2/\'v4+4v)/:2/\ -2

i{—ggy(2k~l)),” Chag(2k+2)n u[

k=0

- e - s"“ 7 X( A2
+b;‘ l{(Zk— 1)(2/&'*5)4‘ l —2\’}/v 24 l]’/ (4k - l)v {(2/{-;_] )" :2k(2k+2) - 1 +2V;‘A“k

+h Rk +2)2k+5—4)s ‘J/'(4/c+3)}P’3/\.(u)+&P}(u):O. (54)

where prime indicates the differentiation with respect to the argument. If we set the
coefficients of P%(u) equal to zero, we obtain,

5 (k) z3(k) .
2 AaH o R+ b Ha LK) a7 b b ) = s k2
(55)
where
: P P
Hl(nak) = (-71\;L;1~/\“7’k-}”+/\‘ I+q}J»:+k>’1, (56)
? 1 ’
H,(n k) = <~ {)/i M, — {);‘ K, .\ \+Q3K,,+k)t1/(2n+ . (57)
with

g: = — {2kQQk+2)— 1+ 2v}/(2k+ 1) (4k +3),
wolk) = — {2k~ 1)(2k—5)+ 1 —2v}/(4k —1)A* 7.

Equations (51) and (55) are best solved for a, and b, by iteration.
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In an analogous way, from three boundary conditions 6,, = 6,4 = g,y =0o0n p = 4,
we can obtain three equations for determining a2, b{® and c¢!?. For this purpose, we notice
that the functions appearing in the third terms of eqn (4) take the forms:

1+cos? ¢

Py () +3Q5(n) = Zsin’ (58)
Y93
R (59)

We also need the following two relations found in Erdelyi et al. (1953) concerning the
associated Legendre functions:

2n+1)P)(cos p)cos ¢ = (n—m+1) Py (cos ¢)+(n+m)P;_ (cos ¢), (60)

dP)(cos )
do B

n+m
ncot ¢ Py (cos ¢)— Snd

s w-1(cos ). (61)

Thus we have

2
dPi(cos ¢) _

“db [(n(n—1DP;. (cos §)—(n+2)(n+1)P}_ (cos $)]. (62)

né =5

Altogether, eqns (4), (45), (49), (58), (59) and (62), and the boundary condition g,, = 0 on
p = 4 yield the following equation :

72k

& A
kg,l {[“d)/(cz)l’n +¥er + 27 190 +X/((2)‘112]m
‘f‘a/(fz)fll(k)‘f‘b/(czl1911(k)+b/(«2)912(k)+cl(c2)h|1(k)}P§k(COS ¢) cos (20)

{ 2
+ 73 cos (29)[(1 — m){a—4y+(5—4v)ﬁ} + B(5—v)sin? ¢:|
+ 4sin® ¢ cos (26) = 0, (63)

where the constants py,r, ..., are given in the Appendix. The function 1/sin? ¢ is singular
when ¢ = 0. To get a regular solution over this region, we set its coefficient equal to zero.
Thus we have one relation connecting «, f and 7:

o+ (5—4v)f—4y = 0. (64)
Next we need the following two relations :

nr—1)(n+3)
P3+ 2(cos ¢) — [w-

dP;(cos ¢) B 1 {nz(n —1)
dp = Gnp@ns D | 2043

+D)(r+2)(n-2 2 b?
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2 . _ 1* 7 n(nw 1)
PH(COS ¢)Sln ¢ = sin ¢(2n+1) {" Zﬂ*f"; n+ﬂ(COS ¢)+[2n+l
(n—=1n+3)  (n+2)(n-2) (n+2)(n+1) |
T n+3 2n—1 JP”( s)— r— | P (cos (15))% (66)

to use the boundary condition o,, = 0 on p = 4 to obtain another relation to determine the
unknown constants. Thus we get

g

Z {[ (7 1Pa o Pzz“*”\y;\ 1F ‘*“PA’"”"}'X&”Q”_{_}Q‘ 1922

k=2

2% 2

2 “ 5 . 2 2 3
+ k73] 2R +al” | fai (k) +al fry (k) 82 162, (k) + 82 | gaa(k)

W gaa (k)P e (k)+('i2’1122(k)§1’5’k _1(cos ¢) cos (28)/sin ¢

{ 0S
+}3cos(26)[ 552"" Sy4+(4--2v )[ﬁ}+-~ g Ip+6(1—-n)f}
—f(1+v)cos ¢ sin Qﬁ]*& Lsin ¢ cos ¢ cos (26) = 0, (67)
where the constants p,,. ..., are listed in the Appendix. Again, to remove the singularity
in eqn (67), we set
2005y 4+ (4—-2v)f = 0. (68)

Since the coefficient of cos ¢/sin ¢ in eqn (67) is the linear combination of eqns (64) and
(68), the singular terms in eqn (67) are removed.

The condition o,, = 0 on p = 4, after using eqns (65) and (66) yields the following
equation :

3

Z {[qﬁ}f’pﬂ W W ra 0 g 1 g0]

few=

2 2%

A ”
2k 3 2)1 +ai? f(k)

0 ) 0520 67 s (0 ) HE D) 1, o

in (26 L2
+i%%l[{2&#5)}%‘(4“2"’)!3}(;;{8 sin? ¢)+Sln¢{_2}+(4 2V)ﬁ}]

~ isin ¢ sin (26) = 0. (69)

The singular terms in the last equation vanish since their coefficient is identically zero from
eqn (68). Now solving eqns (64) and (68) for « and y in terms of 8, we find that

o= 3—-4v)p, 7 =21—-vp. (70

In eqns (63), (67) and (69), as the thickness 4 tends to infinity, the summed terms
vanish. The coefficients of each Legendre function vanish. If we examine these terms, we
see that these terms contain af” (k = 2), b{¥(k = 1),and¢}? (k = 1). Thus the only remaining
coefficient is a{®. Therefore, we have from eqns (63) and (67), when b =
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12 S5—v
3a? FER ﬁ(p ) _ -3, (71a)
8 1+v
L B Y 1)

and from eqn (69) we will again obtain eqn (71b). Solving eqns (71a) and (71b) sim-
ultaneously for a!? and B, we find that

54° a3
— @~
B=to—1p @ 2(10v—14)° (72)

Therefore setting f = 54°/(10v—14), from eqns (63), (67) and (69), we obtain the following
three equations for determining unknown coefficients af?, b{* and c{”. From eqn (63), we
have

Y {aPai(n, k) +bP B (n, k) + Py (n, k) +ai? fr11(k) + b2 g1 (k)
n=1

+b2g12(k)+cPh (k) + [—TLpi + Oy,

A% S5v—1
2V s k=1, (T3

+Fk,]q||+rkq12]m= - 10v—14

and from eqn (67) we get

Y {aPoy(n, k) + b7 B, k) + Py (m, k) +ai? | fo1 (k) +af? fry (k)
n=1

+522921()+ b 1G22 (k) + 57 g3 (k) + ¢4 1 hyy (k) + P hyn (k) + [Tk poy + 1T, pay

A2 12

- = >
(2k)! 15(10v——14)5k‘2’ k=2,

+O 172+ O+ oga1 + Tk 142, +T4g25]

(74
and eqn (69) yields

Y {adPas(n k) +bP B3 (n, k) +cPy3(n k) } +al? f11 (k) + b2 1 g3, (k)
n=1

+ b2 ga2(k) + 2 by (k) + P hsy (k) + (T1psy +Oprsy + Oy 73,

A% 4
8, k=1 (79

+1%_ 195 +FkQ32](2k—+2)! = T 0v—14

The detailed expressions of oy, f; and y, (k = 1,2, 3) are given in the Appendix.

3. NUMERICAL EXAMPLE

Numerical examples will be given for the various values of 1. We can calculate the
stresses at any point on the slab. However, the most important one is the maximum stress
occurring at the poles of the cavity, i.e. at (p, ) = (4, +1). From eqns (48) and (49d), and
the value P{?(0) = 3[(5)._,/(k—2)!], we find that
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LR B TR R N A B
e R L ¥ A 2K Ak b7 SN R O A
O o i kZ:” [(21{)‘./\(“'& D +ak+ 12k + 1)z - ;\3&}_“ 7(2/{+2)!/,
N (5)w - , I B .
2 Ul e RO f
‘a2 16(2/\' Y cos (20 - E 1”[ Ok b1y (h+ 2002k + s
R . Vi A
bk + D)2k +3—4ns + .3 R g
I NI
(o 1 20w cl O
X6(2/\'~1)'(‘OS(2())+/’3,\‘/—‘, (2/‘%2)’/ 4—(} J/ (7(3/\ 77)’L\\\(_())
cos(20y | .
+4icos (20) + 1} + ~/,(; ) { :+27 + 4y --3) } (76)

Of interest is the limiting value of ¢, as the thickness of the plate /4 tends to infinity.
In this case we have seen earlier that all the coefficients ;™. b7 and ¢ vanish except '
which is given by the second of egns (72). To find limiting values of g, and b,, we look al
eqns (50) and (54). As i — »x_all ¢, and y, tend to zero, and coetlicients of each Legendre
function in summed terms in eqns (50) and (54) vanish if k& > 2, and these terms contain
a.(k = 2),and b, (k = ). Therefore, the only remaining coefficients are «,,. ¢, and h,,. Thus,
from eqn (50) we obtain

10 -8y .
a0+, by v (7N
D
12 4(5 —v) : ;
Ca)+ by =\ (78)
27

On the other hand, from egn (54) we obtain

4 204+

T By = —1;% {79
/

-
hl

If we solve eqns (78) and (79) simultancously for «, and h,, we find that

A / 547 (80)
= Y, = -
o 14—10v" "7 214 10v)
and from these values and eqn (77). we obtain
13~ 10v .
dy = ( v) o, (81)

- it
2(14 10w
In eqn (76), as h — o, all ¢, P, A, %™ and ¥, vanish. Thus eqn (76) reduces to

V= —ba s S —ags = (3=-4nbys a6, T cos (20) + Ueos (20) + 1)
S(2v—1)
10v— 14

[«

cos (20).  (82)

Putting the values of a\”', «. ¢, and b, from eqns (72), (81) and (80) into eqn (82). we find
that
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w12 150y
%¢ T 14”10y " 14—10v ©

0s (20).

When # = 0 the above reduces to (27— 15v)/(14— 10v) which is in complete agreement with
the known result which can be found in Timoshenko and Goodier (1970).

Now in eqn (76), if we substitute ¢, in eqn (33) and so on, one of the double sums can
be expressed in closed form, and o4, can be written as follows:

o 1
"M:HZ“"(@?)'E{ —4vS) — S} — A% 3(k+1)(2k+1))

k=0
(Up—20V— V) — A" %3+ 1)(2k+3—4v))

1 1
+cos (20)(2 (Z)W{Rk+28k+i‘2k 36(5)2/( 2}+ Z b;(¢2) (2k 1)'

1
X {2U+V,+ 2727 26(5) s} + Z c? @-Eﬁ W+ A% 12(5) -2}

15v—-12 512 o '
+ m)*‘ FT0v—19) < W)(— <2—3v>f0 ol 0) {¢h sinh (L)

—2(1—v)cosh ({h)} d{+(2—-3v) Jw go(4,{) cosh ((h) d{—(1-v) fw ho(4, ) dl
0 0

3=dv - l(2U0*Vo)'*‘(l“")Wo), (83)

where

f* oo

Re=| filhOQLh—3+4v—e *")d(,
[y

f* oo

. Je(4,0)d¢,

n
At
I

(*oo

S, = . g(A, 0 d,

J
(o

U, = . S O{Ch? —(1=2v)(2~2v)} d¢,

foo

Vi JelA, QQh+3—dv—e~ 2N 4L,

I

o

i

Vi f k(A OQ2h+3—dy—e~*M) dL,
0

W, = f b e de,
0

with
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7 2k+2 e
. 8 cosh (4
Je(4, Q) = \;7_#__.,(!@)*’
2(h+sinh (20h)
{** 4 sinh (20)
2(h+sinh (20h)°

¥ cosh (AD)

gk()“a C) =

hi(4,0) =~

“sinh (CA)

Table 1(a). Coeflicients a,, b,, &}, bY and ¢ for 4 = 0.1

n a, b, n a? b2 A2
0 —0.4563E--03 0.2173E-03 1 0.4344E--06 —0.1951E—11 0.7104E — 09
1 —0.8694E — 06 —0.9755E—10 2 —0.9850E 13 —0.1174E~ 15 0.7423E — 13
2 0.4646E—13 0.6592E— 14 3 —0.1119E~-16 —0.5140E-20 0.5171E~17
3 0.3527E~ 17 0.1258E—18 4 —0.1032E-20 —0.5870E -25 0.3429E 21
4 0.1600E--21 0.3310E-23 S —0.7518E-25 0.1328E 28 0.1890E — 25
5 0.5996E - 26 0.1135E-27 6 —~04110E—-29 0.1275E-32 0.8057E—30
6 0.2518E—30 0.4242E —32 7 —0.1697E 33 0.6519E —37 0.2663E — 34
7 0.1075E—-34 0.0000E + 00 8 —0.5430E — 38 0.2304E —41 0.6988E — 39
Table 1(b). Coefficients a,, #,, ¢?, b and ¢? for 4 = 0.2
n a, by n al b7 el
0 —0.3641E—02 0.1731E—02 1 0.1381E—-04 —0.4768E — 08 0.1665E —06
1 —0.2777E—04 —0.9877E—-07 2 —0.4088E —09 —0.2369E — 11 0.2883E - 09
2 0.1904E —09 0.1070E-—-09 3 —0.7436E— 12 —0.9662E — 15 0.3214E 12
3 02280E—12  03273E—13 4  —0.109SE—14  02523E—18  0.3427E—15
4 0.1658E —15 0.1380E— 16 5 —0.1273E—17 0.1262E—20 0.3045E — 18
5 0.99SSE—19  0.J57SE-20 6  —0.1112E=20  0.IS7TIE-23  0.2090E-2I
6 0.6692E—22  0.4S31E—23 7 —0733E-24  0.1206E-26  0.1111E-24
7 0.4575E—25 0.0000E + 00 §  —037SIE~27  0.6629E—30  0.4680E—28
Table 1(c). Coefficients a,, b,, at*, bY and ¢{? for 4 = 0.3
n a, b, n a2 B e
0 —0.1223E-01 0.5799E — 02 1 0.1033E—-03 —0.3066E - 06 0.3616E — (5
1 —0.2095E—-03 —0.5612E—05 2 -0.5408E - 07 —0.7124E—09 0.3389E—07
2 0.2554E—-07 0.3068E -07 3 —0.4993E —09 —0.1322E—11 0.1920E — 09
3 0.1451E 09 0.4764E — 10 4 —0.3710E—11 0.2581E— 14 0.1047E—11
4 0.5390E—12 0.1018E—12 S —0.2177E—13 0.5043E — 16 0.4775E — 14
5 0.1640E— 14 0.2828E—15 6 —0.9595E—16 0.3084E— 18 0.1678E— 16
[§ 0.5580E — 17 0.8575SE—-18 7 —0.3196E — 18 0.1186E—20 0.4556E— 19
7 0.1933E—19 0.0000E + 00 8 —0.8263E—21 0.3285E--23 0.9779E —22
2.12
x 2.08

£

}_

~

b
gy

2.04

0.2

(inches)

Fig. 2. Maximum stress versus radius of cavity.
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Fig. 3. Stress distribution around a spherical cavity 4 = 0.2,
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Fig. 4. Stress distribution around a spherical cavity 2 = 0.3".

Table 1 shows the values of the coefficients a,, b,, ai®, b{? and ¢{? corresponding to
v =0.25 and £ = 1". Using eqn (83), we evaluated the maximum stress at (p,u) = (4, 1)
for various values of 4, and these are shown graphically in Fig. 2. Figures 3 and 4 show the
stress distribution around the cavity for various values of § when A = 0.2" and 2 = 0.3".
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APPENDIX

The detailed expressions of «, f, . f, g and h are as follows:

o (mk) = [—L,epiitd g+ g als,
punky ={—M, pi+Kiooqn+Keigi2ls /@n—1),
vl ky =r L8y,

where
pro= —2k(2k—1)/27,
g1y = (2k—2)(2k — 12k +2)(2k — 4+ 4v)/(dk — )17,
1o = {1k + 12k —2)—2v; /(dk +3),
rhy = 42k - )42,
5, = A%iQn— 22k +2)1.
Filk) = Qk+ D)k +2)/2%+ 7,
gui(k) = {2k(2k +3) — 20} (2k — 2)/(4k — YA,
G1s(k) = (2 +2)(2k + 3)(2k + 5—4v)/(dk +3)A %+,
k) = =8k + 1)fA%*3,
(k) = [ =Ly oo Poi—LnciPoa+ i i+ Juii g2t 0g2:120— sy,
B k) ={—M, . P =M, Pt Ky o00i + K,y i 1G22 Kyigas]sa.
vt k) = (L rayH 1, 07 02)80,
where

P = (2k—3)"(2k —2)/(4k —3)}7%,
P = —(2k-—-1)j(4k+1).

G2y = (2k—48)(2k —3)?(2k — 6+ 4v) 2k (4k — 5)(4k —3) A7,

If

[(1—2v) (2 — 1) ~ (2k — 2)7(2k — D)2k + 2)j(4k — 1) (4 + 1)
— (2~ 3)(2k+ 1){2K(2k —2) — 1 +2v}/(4k — 3)(dk — ]/(2k+1),
Gar = — {2k 1+ 20+ (2k — 1) (2k +2)} 22/ (4k+ 1) (4k +3).

22

ray = 4Qk—3)%23,

ryn = —4/(2k+1)(4k + 1),

sy = 2% @n~ IR

Falky = —2k(2k —2)(2k —3)/(4k ~3)A*

Saa(k) = (2k+2)7(2k + 1)/ (dk + 1)a* T,

ga(k) = — (2K ~4)(2k —3)(2K(2k —4)+2+20) /(4 = Sk —H2* .



where
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gaa(k) = [—2k(1 —2v)+(2k~2)(2k+2){2k(1 —m)+ Q’f-"i%”}
+ 2k + 1)2Kk(2k — 3)(2k + 3— 4v) /(B — 1) (4 — 3)) A%+,

Go3(k) = 2k +2)2Qk+3)(2k + 5 — 4v)/(dk + 1)(dk + 3)1%+3,

By (k) = ~6(2k —3)/(8k — 3)A%+ 1,

fya(k) = —4(2k+2)/(4k+ 1)+,
(k) = (= Lyyi Pyy o121 + 000 0432)8)
Ba(n k) = (=M, 1031+ Koo 131+ Ky 1G32)51/(2n~ 1),
yaln, k) = (L irsy + 1,1 732)8 0,

= —2(2k—1)/A%,

= =202k —2)(2k+2)(2k —3+2v)/(dk — 1) A2,

G2 = =22k — 1 +2v)/(4k+ 3},

ra = {— 4422k~ [ —k+ 2k — 1)k + 3) 2k/(Ak + 1) (4 +3) +2(k — 1) (k + 1)/(4k — D]} /2%,
2kj(4k +3),

Sok) = 4k 4 1)j2%+3,

G (k) = 8k +1—v)(k— 1)/(4k — A%+,

G32(k) = 4(k+2—v)(2k +3)/(4k +3) A%+ 3,

hay (k) = (2k+ 1)(2k —3)(2k =2)/(4k —1)A% !,

hyy(k) = [— 44 2k +3){ =2k — 14+ (Qk — 1) 2k +3)/(4k + 1) (4 +3)}]7A%+3.
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